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A. Some Periodic Orbits in the Rectilinear We have used in this study a n,_n-rotating inertial

Restricted Three-Body Problem, R.A. Broucke barycentric coordinate system. The equations of the
motion of the satellite under the gravitational force of

We have described in SPS 37-42, Vol. IV, pp.._1-,_, the primaries (1 - v) and t_are
and SPS 37-43, Vol. IV, pp. 20-22, some recent results
obtained in the elliptic restricted three-body problem.

The present article gives a few additional results relating d2x - (1 t_) x - xl x - x2
"o a special configuration of tl,e elliptic problem: the ease dr' r_ r_
with equal masses and with extreme eccentricity e = 1.

The two primaries are supposed to be moving in a d2Y -(1 t_) y - y_ y- y2
Keplerian oscillatory motion on a straight line. This is the dr"7= - -3rl t_ r2_ ,
limit of the elliptic ,notion when the eccentricity tends
to 1. We have first become aware of the interest of this where the distances r, r_ from the satellite to the pri-
problem when we have seen that some of the periodic maries are given by
orbits of Stromgren's problem can be extended all the

way from the eccentricity e = 0 to the eccentricity e = + 1. r_ -----(X -- Xl) 2 Jr (!/ -- ya) 2
This leads us to the conclusion that a special study of
the case e = + 1 could be worthwhile. A similar conclu-

sion was drawn in an article by J. Sehubart (Ref. 1), in rl = (x - xs)_ + (y - ys)'.
which he proposed to take the eccentricity e = + 1 as a
starting point to a systematic study of the elliptic re- The coordinates of the two primaries are given by the
strieted three-body problem, well-known laws of elliptic motion. We have used them
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in the form ence of the ::ingularities rl =0 or r2 -- 0. In this pa_icular
problem we have applied no regularization to the equa-

x, = - _ (-e q- cos E), tions of motion.

yl = -ft (1 - e-')'_ sin E
Because of the simplicity of the equations of motion,

x= = (1 - /_)(-e E), we have first decided to integrate some orbits with regu-

y._,= (1 -/_) (1 - e'-')'_'sin E, larly _paced initial conditions, hi order to see if some
periodic olbits would eventually exist. We ),ave soon

where the eccentric anomaly E is related to the time by an'ived at the rather surprising conclusion that a large

Kepler's equation number of periodic orbits are existing, although they are
all isolated. We have then computed thirteen of these

t + X = E - e sin E. periodic orbits with somewhat higher precision. We have
used the classical Runge-Kutta numerical integration

The phase constant X, in our application, may be pro_dure, with a variable step, equal to 0.005 r_r_. Ourobjective was not mainly in the high precision of the
taken equal to 0 or _-accol :lihg to the initial position of numerical results, and for instance, by using full double
the primaries, either at pericenter o_ apocenter. Actually, precision, our end results have probably only five- or
all the orbits which will be described below belong to six-place accuracy. The periodic orbits have been obtained
X = 0. There is no di(ficulty in the numerical solution of
Kepler's equation even when e = 1. in order to describe by two-dimensional hnear differential corrections, oncesome good avproxirnation had been obtained by the
the Keplerian motion of the two primaries as a function previous computer runs.
of time t. It is important to notice that the above formu-

" lation of tile elliptic three-body problem is valid for all
eccentricities (0 L e _ 1). We shall consider here only We have given in Fig. 1 a diagram which shows the
the case e = 1. When we have the _:niteccentricity, there initial conditions that have been explored. The initial
is no sense anymore in using a rotating coordinate conditions being of the form
system for this problem, since the primaries are perma-

nently moving on a non-rotating st-aight line. For the (x0, 0, 0, yo),
same reason the so-called Neehvile transformation can-

not be applied when e = 1, and the simple form of the
we have arbitrarily restricted ourselves to the limits

equations of motion, which is completely similar to
the form for the circular case, cannot be used for high

eccentricity. 0.1 < xo < 1.0, 0.2 < yo < 2.2.

Because of the straight-line motion of the two pri- We have also restricted the velocity 0. to be below some
maries, the problem that we are treating here presents parabolic or escape velocity defined by
some similarity with the well-known two-fixed center
problem. Our problem may be considered as a general-

ization of it, the two "fixed centers" now moving on a _), = _ .
straight line, according to Keplerian motion laws. Because
of this fact, we have here a problem which seems more

interesting 'ban the two-fixed center problem: the prob- Imposing all the above restrictions, we obtain the
lem we are studying is gravitationally consistent while shaded area in Fig. 1. We have swept this area with
the definition of the two-fixed center prot.lem is some- regular intervals of 0.05 for Xo as well as for _o. The
what arbitrary (the primaries attract the satellite but do thirteen points on this diagram correspond to the isolated
not attract each otherl). Among the sunilarities with the periodic orbits which have been found. The eleven orbits
two-fixed center problem one can also mention the three to thirteen form a single sequence: they' all h_ve
absence of the Coriolis force and the characteristic loops one loop around one primary and an increasing number
in the orbits, which are due to this force, of loops around the other primary. We have given the

inztial conditions of the thirteen periodic orbits tn Table 1.

The numerical integration of the above equatiom of All thirteen orbits have the period T = 2s,. In Fig. 2 we
motion may encounter some dtlRculties due to the pies- have shown the actual orbits, referred to the barycentrtc
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Fig. 1. Diagram of Initial conditions f,_rperiodicorbits (J3) _ )'0.3

coordinate system. In Fig. 3 we have show,_ the six most _ _/
simple orbits referred to a coordinate systeL1 centered at __

one primary ml = 1--p (geocentric) and the other pri.
mary m=--_, (selenocentric). In our particular problem
we have equal masses 1 - p - _ - 1/2, and we use the
word =geocentric" for the coordinatesystemcenteredat Fig.2. The13pedodlcorbits in the borycentdc(inertial)
the pr/m_ry which is shown on the left side in our t]gures, coordinatesystem
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(I) GEOCENTRICCOORDINATES(I)SELENOCENTRICCOORDINATES Table 1. Initial conditionsfor 13 periodicorbits

r ' \
1 0.5791.52 1.680050

, 2 0.574506 0.346101

/ x _ 3 0.682309 0.9814:7

4 0.492110 1.192088

5 0.396211 1.347039

6 0.336523 1.473383

7 0.295148 1.581601

(2)__ _ 8 0.264484 1.677079

9 0.240690 1.763014

! ' x 10 0.221596 1.841481

i 11 0.205876 1.913916

I 05 12 0.192667 1.981358

(3) Y

13 0.171617 2.104198(3)

__[[ >T Similarly, "selenocentric" refers to the primary shown on

- the right side. When we use the geocentric or seleno-
centric coordinates, we can see that some cusps are
present in the form of the orbits. These cusps are due to
accelerated translational motion of the frame of reference

(4) (4)/_ rather than the motion of the satellite.

_ _ As a matter of conclusion let us say that we have here

_-_,,, f' _ __ thirteen isolated periodic orbits; however, theseorbitScomputerprogram generate

_ . are not isolated as far as e and _ are concerned. We have

/-x.__./._ x prepared a which should
! new periodic orbits by varying e or t_ in a more or less

automatic way. For instance, we have been able to make
i the following computer runs:

(5) _ [ (1) In the neighborhood of orbit 1:22 periodic orbits
/ with e = 1.0 and t, = 0.5 to 0.479.

i _.{_o _ _ (2) In the neighborhood of orbit 2:12 periodic orbits

/_ with p = 1/2 and e = 1.0 to 0.988; 26 periodic
orbits with e = 1.0 and t, = 0.5 to 0.458.

(3) In the neighborhood of orbit 3:23 periodic orbits
with e = 1.0 and p = 0.5 to 0.466.

(6) ',_ (6) A_{i_mmw_

= [_I ,__ B. Mariner Mars 1969 Celestial Mechanic=

_ Experiment, j. D.Anderson

x '_ 1. Summary

, An error analysis has been pedormed for a set of
' 15 parameters determinable from the Mariner Mars 1969

' tracking data.Among these 15 parameters are theEarth-
Fill. $. Thefirst6 periodicorbitsin the IleO,¢,entdcand Moonmassratio,themassofMars,the astronomicalunit,

the selenocentrlccoordinatesystems and the positionof Mars at spacec,mft.Mars encounter.
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It is these parameters which are of importance to the ments, are equally important. Perhaps more important,
celestial mechanics experiment (CME), at least for track- D. Trask and L. Efron (SPS 37-41, Vol. III, pp. 3-11)
ing data taken within the mission duration of launch to point out that a combination of doppler and range obser-
encounter plus 3 months, vations can be used to calibrate the total (ionosphere and

space plasma) charged particle effect on both types of

The motivation for the analysis is to determ,.'_e the data. This is especially important for Mariner 3969, which
value of adding range data to the spacecraft tracking does not include a dual frequency experirrent. A. Liu
and to investigate the effect of gas jetting from the infra- and R. Motsch (SPS 37-44, Vol. III, pp. '28--33) have
red spectrometer (IRS) during planetary, encounter. The explored further the possibility of a ch3 "ged particle
conclusion with respect to range data is that they sig- calibration.
nificantly improve the value of the experiment. With
range data it should be possible to determine the astro- Nevertheless, with the limitations of the present analy-
nomical unit and the position of Mars to better than sis clearly in mind, it is possible to conclude that adding
I00 m. Without range data this number is increased to range data to the doppler tracking can leduce the un-
about 1.500 m, and realistically the error could be larger certainty on the astronomical unit from a region of
because of an inability to calibrate the charged particle -+-150to ± 1300 m with doppler data only to a region of
contribution to the doppler signal. Both range and dop- ___25to __+65m for range and doppler data. The position
pler data perv_it this calibration, and provide as well an of Mars is reduced from a region of ___150to __+1700m
improved opportunity for data validation, to a region of ___15 to ±90 m. The effects on uncertainties

in the masses of the Moon and Mars are not as pro-
nounced as for the astronomical unit and the position- If the uncertainty in the force imparted by the IRS gas

jetting is less than __+1dyne over a 90-min period around of Mars.
encounter, then the effect on the CME is insignificant.
For an uncertainty greater than __+1dyne it is necessary 3. Effectof IRSGasJetting on Celestial Mechanics

to include a model for the IRS jetting in the solution for Experiment

the astronomical constants, particularly for the mass of In this article it is assumed that the gas jetting from
*" Mars. With the inclusion of this model, we would at- the IRS experiment occurs in a period 1 hr before plane-

tempt to reduce the uncertainty in the force from the tary encounter to _ hr after encounter, a total period of
IRS jetting to the level of _+1 dyne. In order to accom- 90 min. To see what this means in terms of a corruption

_ plish such a reduction the a priori uncertainty should of doppler and range data, consider the time variation in
certainly not be greater than ±100 dynes, a number two the geocentric radial velocity and range of the spacecraft
orders of magnitude larger than the ultimate goal of during a 12-hr period centered about the encounter time.
___1dyne. The a pr/or/ uncertainty is defined as that Fig. 4 shows a plot of the geocentric radial velocity and
obtained from preflight design and testing of the IRS
gas jetting system and from any useful telemetry ob-

_ tained during the jetting period. _ ,_o

_i 2. Effectof Range Data on CelestialMechanics _ I_.s. Experiment
..J

In Subsection 5, errors on the orbital parameters and >
astronomical constants are computed for doppler track- _ ,n.2
ing data only and for doppler and range data. The results ,.

,, indicate the significance of adding ranging data as far as _ ,._.s
the celestial mechanics parameters are concerned. In a •

sense this is an extension of an earlier article (SPS 37-43,
Vol. III, pp. 18-24) where the addition of range data to _ 14.4: ._ o_ "_

_ a single pass of tracking was considered. Of course it is lamurr6,,_m mmus'r7.,_m
an oversimplification to judge the value of ranging data T,M(t_T)

:: solely on the basis of an error analysis of the sort given
_ here. Other considerations, such as having an independ- Fig. 4. Geocentricradial velocityvs time during

_ ent type of data to compare with the doppler measure- planetary encounter
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*0 I can be handled, as in Subsection 4, by assuming that the

tracking data are corrupted by the jetting and by weight-
ing the corrupted data less in the weighted least squares

30

procedure. The other effect on the determination of the

constants is that the orbit of the spacecraft is perturbed

,, during the jetting period, and, as a result, when the gas
o zo / is depleted, the orbit is not known as well as ff the gas

x / jetting had not occurred. This situation can also behandled by properly representing the statistics of the
co_ ,0 / orbital parameters at the end of the gas jetting. Thus,z
,t orbital errors which result from the jetting are mapped//ee

o into tbe errors in the constants as determined from data

_. o taken before, during, and after the jetting period.Z
uJ

,8
co Effects of the jetting on the orbital position after aEJ -I0

'" / period T can ',e estimated from 1/.,FT-'/m, which for a_N

force F of 100 dynes amounts to 56 m, while the effect on/o -2o velocity from FT/m is 0.02 m/sec for the same force.
z In this article, the inabilty to compute a perfectly accu-

rate orbit because of an uncertainty in the force model
-30 during gas jetting is ignored, and the only effect of jetting

,b on the orbit and constants is presumably to decrease the
accuracy of the data during the jetting period.

-40

i$ h 20 h 22 h O h 2h 4 h @

AUOUSTS.,SSS AUOUSTr. tSSS The numerical results of Subsection 5 show that the
TIME (ET) only constant significantly affected by the gas jetting is

Fig. 5. Differencein geocentricrange of dote and the mass of Mars and that an uncertain force greater than
.4.100 dynes effectively destroys the doppler data takengeocentric range at planetary encounter vs time
during the jetting period. Even at -+-10dynes, over 90%
of the potential information in the close encounter data

Fig. 5 shows the difference between the geocentric is lost. The addition of range data during the jetting
range of date and the geocentric range at encounter, period reduces the -4-10-dyne effect on the mass from a
Now, as an extreme case, suppose that the tracking data 3o degradation for doppler data only to a 20 degradation
during the 90 min of gas jetting are completely neglected for range and doppler data. In order that the gas jetting
in the determination of the constants. It is clear from not seriously impair the solution for the mass, it is im-

! Fig. 4 that a significant portion of the doppler curve is portant that the random uncertainty on the force be con-
' lost and that some sort of degradation will occur in the siderably less than -4-10 dynes and that rm,ge data be

, accuracy of constants which depend on the close ap- taken during a significant portion of the jetting period.
preach to the planet for their determination. For example, Ultimately, the force should be known to ±1 dyne. A
the accuracy of the mass of Mars could easily be de- calibration for charged particle effects with range and
graded. On the other hand, the time variation of the doppler data is an important part of achieving this ulti-
geocentric range during the encounter period does not mate accuracy.
exhibit any peculiarities during the 90 min of jetting, and
the contribution of the range .data to the determination
of constants should not be significantly affected by the 4. Gas Jetting as a Systematic Error SourceI

loss of data. Let gas escape from a spacecraft of mass m at a force
level equal to F in dynes. Tllen the acceleration a tin-

It is important to realize that the gas jetting affects the parted to the spacecraft is a = F/m, and ff the force is
determination of the constants in two ways. The first and
most straightforward is the introduction of a systematic 'The author wisha to thank D. W. Curkendallfor a_mce In
source of error during the 90-m/n jetting per/od. This pmm_ Sul,.ecUon4.
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exerted over a time interval T, the deviation in the posi- coordinates at the time of the spacecraft's planetary
tion of the spacecraft at the end of the interval, com- encounter, the mass of the Moon by the selenocentric
pared to a gas-free position, is Ap = _'.'.,aT". Alternatively, gravitational constant GM, the Martian gravitational
suppose tb':t counted doppler observations are obtained constant by the mass of Mars in solar mass units, and the
from which the change in topccentric range over some astronomical unit A is given in metric units. Actually,
count time interval T,. is deduced. If the error in this the fundamental unit i!: light seconds in the determination

range change is expressed in terms of an error ,r_, in of the astronomical units, but error estimates are often
topocentric range rate, then the range change error over given in metric units. The non-gravitational parameters
the count interval T,, is given by T,. _rb. Further, if the "rB,GT and GN are also included in the parameter sta-
range error is accumulated over N samples of doppler tistics to allow for uncertainties caused by solar radiation
data, then the integrated range error over the N samples pressure and attitude control forces. The uncertainties
is T,. (N) 'a or/,,and for an even distribution of samples for these three parameters are given as a percentage of
over the time interval T, .such that T - NT,,, the inte- the total solar radiation pressure. Their inclusion as

grated range error is (TT,-)'_ at;. deterministic parameters results in realistic uncertainties
only if the actual Mariner 1969 data are reduced with an
estimator designed to handle random time varying forces.

The approach followed here, in representing the error
from an unknown gas jetting force, is to absorb the sys-
tematic error from the gas jetting into N independent A_I e.tor estimates are ob' ained for two extremes in
range rate measurements. All that is required is to equate assumed station location error. The first assumes no error
the range error 1/2aT" from the gas jetting over the time and the second ±5 m in station location uncertainties.

Note that Hamilton, Grimes, and Trask (SPS 37-44,interval T to the integrated range error (TT,.) '_ ,_, over
Vol. II!, pp. 4-11) have stated that a goal of -4-1m uncer-the same time interval. The resulting range rate error

for N independent samples at intervals T,. is tainty in station locations is reasonable for Mariner 1969
data reduction. By using -+:_0and -+5 m, the region of
uncertainty for the parameters should be conservatively

_P = 2 m (1) defined.

Other numerical data which go into a computation of
Let the gas jetting occur over a period of 90 rain and set the uncertainties are given in Table 2.
m = 259 kg and Te = 1 rain. Then for F given in dynes

the numerical expression of Eq. (1) is The resulting errors in the 15 parameters of a simu-
lated least squares solution are obtained from the co-

_b = 0.0989 F cm/sec (2) variance matrix computed in SPODPA_Mod II. In
Table 8 the standard deviations are given with no IRS

The accuracy of the doppler data is conservatively rated gas jetting during encounter. Four solutions are repre-
at 0.1 cm/see when sampled at l-rain intervals, and thus sented to demonstrate the advantage of including range
it is apparent from Eq. (2) that ff the unknown force F data. They are:
is greater than -4-1 dyne, the gas jetting can be considered
a serious source of error. One of the purposes of this
article is to investigate fairly rigorously the implications Solution Type of data

of an unknown force of grea er than 1 dyne, at least as A Range and range-rate data, no station loca-
far as celestial mechanics parameters are concerned, tion error

B Range-rate data, no station location error

$. Numerical Results C Range and range-rate data, ±5-m station
location error

A version of the JPL orbit determination program
(SPODPA--Mod II, program tape 04_3) t_ used to obtain D Range-rate data, ±5-m station location error
variances on various constants and parameters of
nomieal interest. The orbital parameters for the space-
craft are represented by geocentric equatorial coordinates When Ills gas jetting errors are included, by the method
at the epoch, the position of Mars by heliocentric cartesian of Subsection 4, there is no appreciable effect on any of the
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Table 2. Data used in the computation of uncertainties Table 3. Standard deviations in the absence of

_ IRSgas jetting
Geocentric true equalorial coordinates

(March 111, 1969, 1Uh52"43:000 ET) No station location error 4-5-mctation location error

x, km --905058.17 Parameter I:) and J3 p only p and _) p only

y, km -- 11405,54.5 (A) (BI {C) (O)
i

Z, km -- 1118697.0 x, m 24 128 188 1054

;c, km/sec -- 1.6423604 y, m 3; 91 517 204(

_',kin/see -- 2.1007967 z, m 25 77 383 1984

J', km/sec -- 2.0376762 _, p./sec 4 27 14 284

..... ),, Iz/sec 3 12 29 188

Heliocentricosculating elements referred to true ecliptic _nd equinox ,_,/_/sec 3 17 23 132
(August 3, 1969, 13h30m48._319 rlT)

xd, , m 9 42 68 131

a, km 189835290 Yd ' m ; 4 154 33 1658

• 0.22207465 z_, m 7 59 87 647
GM, km)/sK s 0.000056 0.000169 0.000399 0.000255

T February 26, 1969, 00h03m4:069 E1

i, deg 1.7830771 M_, ppm 0.24 0.25 1.03 0.J8
A, m 26 150 65 1312

_, dog 351.34975 'y8, % 0.000231 0.00142 0.00102 0.0179

_, dog 164.38212 GT, % 0.000381 0.00300 0.00565 0.0394
J.,

GN, % 0.000268 0.00130 0.00349 0.00518
Aerocentric osculating elements referred to true ecliptic and eq_llnox

(August 7, i969, o0hoom53.*541 ETI

a, km --953.33386 Table 4. Standard deviation in ppm for the mass of
• 67704032 Mars at various levels of IRS gas jetting uncertainty

T August 7, 1969, OOhOOm53_.541ET

i, dog 15.817714 Uncertainty in No station location error +5-m staten location error

n, dog 246.27758 IRS force, ID and p p only p cmd j3 J_ only --
co,dog 297.1364 ! dyne (A} All (C) liD)

Additional porameterc No fcwce 0.24 0.25 1.03 0.48
"*"I 0 0.55 0.74 5.96 1.51

Astronomical unit, km 149598500 --100 0.57 0.78 6.39 1.72

Sun-Mars mats ratio 3081000 "+'500 0.57 0.78 6.39 1.7_

Epochfor position of Mars August7, 1969, 00J'00m35.*000 ET

Assumeddor_pler error "4"1 ram/sac random range rate error ].5 parametersexcept the m_s of Mars. ]n Tab]e 4 the
at l-rain sample interval

: results for the mass are given as standard deviations in
Assumed range error ::!::367.4-mrandom range error at l-rosa

san, ple Inteiqml (this corresponds to parts per m/Ilionof the total mass. Aga/n the four solu-
on. rang. m.ocmm,,_, Par 10-,w tions (A. B, C, D) are represented.
tracking pass with an uncertainty of
36Z41(4001'/' or 15m)

o._ 0,,rocki_ March19,I_. 0.'0te C. A DistributionFree Method Involving the
Ico.tlnm,am.ngo) _,,_r 7.19_._0 Spacingof Independent Sample Points,H.Law

A priori error on parameters

_, X.x).k. 10' Consider a continuous probability density funoticm
(;._.it.k,,/,,c 1.0 (PDF), p(z),withp(z)__0 a,d y_.,p(z)dx= 1. Anintm'.
(mcr"J'd''o')' km 500 MtJngproblemwhose solutionis well knownb thefoUow-
_._.k,,'l,,c' C_2 ins. What/s the probability that from n
Ma , _ Jttl samples the propmOm of the l_Pulttloe between the
_.u,, soo miu_um ,ud _um vnlue_d tl_ sampledatawill
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To solve this problem, we note that if z = f'__. p(t)dt since there are n choices for y,, (n - 1) choices for y2, etc.
then z is a random variable whose PDF is uniform on We consider the transformation

the interval [0, 1], since 0 --<z _< 1 for all x and q(z)dz =

p(x)dx, which implies that q(z) = 1 from dz/dx = !J(x) y, = z,,
wherever p(x) is continuous. From

Yz = z,, + zt
(e)

t)dt = (t)dt - (t)dt = zz - z, (1)
JZ_Is °

yn ---'-Z,, + z, + z.. 4" "'" + Z,-_
we recognize that we need only solve the problem for a
uniform PDF on [0, 1]. Let u and v be the minimum and

maximum values, respectively, from n sample values whose Jacobian is identically one, so that the joint density
obtained from a uniform PDF. The joint density function flmction on zo, z_, "", z,-i is
on (u, v) is simply

q(z,,, z,, z2, """, z,-l) = nl (7)

p(u, v) = n(n - 1) (v - u) "-'_ (2) ,-_
withzi_0,0_z_<l, sincezo = y,,zl = y2- y.,

I=0

since there are n choices for u, (n - 1) choices for v, while z: = y._ - y2, "", z,-a = !_, - y,_l.
the remaining (n - 2) sample values must lie between
u and v with probability (v - u) *-z. Hence

Since we are interested in the random variables

' JoC'-_J,.t_r'n(n za, z:, z_, ..., z,_,, we integrate out the random variable
Prob (z2 - zx >- B) = -- 1) (v - u)"-2dv du Zo to obtain

= 1 - B" -nB "-a (1 -/_) (8) h(za, z2,'", z,-l) = nl (1 - z, - z= .... z,-l) (8)

11-1

If we desire that Prob (z2-za>_P)=a, then withz_>0and_ z_=<l. Thus1 - #" - n/3"-' (1 - B) = a, which enables one to find ,_-1
the number of sample values, n, for fixed a, ft. Thus 98

sample data arc needed if we desire that the proportion P,(a) _ ,'rob (z, <--at z2 <=o., ..., z,,-i <=a)
of the _opulation between the extreme values of the data

exceed 95% (B = O'95) with pr°bability a = 0"95" - nl f" fo*.., f.
- "(1- z, - z2.... z._,)

Now the above analysis tells us little, if anything, about
the spacing of the sample data between the extreme Ufl-z,-z2 ..... z,,_,)dz, ... dz,,.,

values of the data. Let us impose the condition that (9)

r .,., w,_ u(0 the unit step function, u(_) = 0 for _ < 0,rb// --<'fl ,=1, -1 U(_) -1 for O.
I., J IP, ,.J

(4)
Let k a +-t = 1 wtth 0__-y <, so that k Is the hrg(n_t

with It, < It, < "" < It, < It-, < "" < It,, the ordered integer for which k a--- 1. Sueemslve integrations
statiades. Again we need only ¢mnsider the problem by Eq. (9) yield
dealing with the uniform PDF on [0,1],

' ( )The density hmetlon for the ordered statistics is P,,(a) = _ (- 1)" n - 1 (1 - m)" 110)
r,m r

p(v,,u,,..., It.)= hi, 0__It,-- It.__"" __It.__1 If, formmmple,n = 4, a = 1,6,we havek = S and
(_ 1,06)= ,_,,.

t
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The author has been unable to find a closed form for The solution to this differential equation is given l,y
P,.(a). However, a computer should enable one to evalu-
ate P,(a) for various values of (_and n.

P(T,--P,,exp[-/or_/7_d'] 14)

D. Techniques for Studying Dispersions of

Nonlinear Systems, s. R. McReynold$ The method of solution proceeds as follows. Partition

Let X be a c_ntinuous ensemble of vector objects the set of initial conditions by selecting .points in the
{x'} with an initial known density function p,,(x). Suppose region of interest. Map these initial points forward by
that each object satisfies a set of nonlinear differential integrating the system equations until t;me T. The proba-
equations bility d_,nqty of the ensemble at this 'nt is given by

Eq. (4), where the integral is along the corresponding
trajectory

= f'(x,t) (i= ], n) (1)

_;en an important engineering question is to find the Eq. (4)indicates the relationship between stabihty and
density function P(x, t) of x at a future time t. In general, diffusion of densities. We note that _ _]i/_x_ = tracei

this task is impos_ible from an analytic standpoint and (_f'/_x,) = the sum of real parts of eigenvalues of (aJ_/_x_).
laborious from a computational standpoint, in this article If the system is stable, the real p_arts of the eigenvalues "-"
we concern ourselves with techniques that may be used are negative, and hence _ _]i/_x_ < 0. Thus, as indicated

4

to determine quantitative characteristics of P(x, t). by Eq. (4), the density of objects will increase with the
, time along such a trajectory. On the other hand, ff the

1. The Continuity Equation system is unstable, then _ _f'/_x, > 0, and the density!

will decrease with time along the trajectory.Elementary consideration, such as that employed in
fluid mechanics, leads us at once to a partial differential

equation for P(x, t): Example:

(ef, =o (9.) = =..,eo(x)= Ixl<x
Ix!>1

This equation is referred to as the "continuity equa-

tion," and is a special case of the Fokker-Planck equation. P(x, 'F)= r ½e-*r Ixl <_e"|0 Ixl>e"
2. Solutionby Characteristics

Eq. (9-)is a quasi-linear,r_rst-orderpart_! dt_erent_] Somesystemshave the property that _ ap/_x, -- 0. For
equation. Together with '.he initial density f,ancti_ Po(Z) these systems the probability dens/ties remaba constant
the solution may be computed numerically. To avoid the along a trajectory. An hnportant example of this is
problem of computing the part, Is of P vdth respect to z Hamilton/an systems. Ha.1fltun/an systems are systems
by differencing, one may employ the use of characteristics, which satisfy

In this case,the characteristicsconsistof the trajectories 1_,= aq-_'aH; _, = _-_H (i = 1, n)
that the objectsfollow, mamel'y,solutionsto the ordtm_
set of equattom _ = f(x, t). Along these character/_.'ies

the der/vatlve of P, which we denote as I;, Is g/van by Obv/o,mly _ _'/_, = _ (BH/'ap, _q, - _ll/'dq, ;)p,)=O.

Conservationof probabilitydmasltyfor

_r, theorem.
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?

3. A FunctionalApproximati,mTechnique Now we note that the operator ?/_t ( ) + _. -_, ( ) f_(_,t)1

For many important cases the initial density is Gaussian is the total derivative operator along the eharaeteristie
£(t). Denoting this operator by ('), Eq. (11) becomes

e.(x) -- Ke -t :_ z' _ (5)

_ ?r

_L _ ;L _f' (_,t) + :-- (_,t) (1'2)S here is a positive semi-definite matrix, and !Tx-_.l'_ is ?.xj ;.x, ;_xs cx_
the quadratic for.,-.,(x-Z,) r S(x-£,) (T denotes transposi-

tion). From Eq. (8), it is clear that P(x, t) has the form Note that from Eq. (9),

P(x, t) =- K e_L'', " (6) ?L
=-- = -(x-_,,) r,=_,o' = 0 (13)Xj

Now by substitoting this into Eq. (2), it is seen that Hence Eqs. (12) and (18) may be used to compute ?L/_xj
L(x, t) satisfies the partial differential equation along the characteristic x.

_L (x, t) J- "" _L "x
_--t- _, "_x, ( ' t) f'(x, t) : r(x) (7) To obtain the characteristic equation for_'-'L/_xs_xk, the

partial derivative of Eq. (11) is taken with respect to x_.

:'_ where This results in

?"L

?"L -_ _, "?xi Pxs ?Xk?f'(x, t) (8) ;'t _xs ?XK f'(r, t)r(x): _ _x__i

+:'< The initial boundary condition for L(x, t) is given by --_ ex, _xs exk ' _x, _-----_kex---_ _x, exs _x_J

L(x,to)- Z . (14)4

The functional technique we shall suggest here consists Using (') for the characteristic derivative, this becomes

of approximating L(x, t) in the neighborhood of a tra-

'!i jectory (characteristic) with a quadratic form. 8_._.xk +_2L_ _F'_x__xi _x_O"LOf_ + _xi _x_ _x_'L_'f_ + _x_ _x_x£j_L?_._ ]
_ Let a nominal trajectory _(t) be chosen as follows: _ _r
:! _x_ _x_

_(0) = xo (15)

_ x, = f'(_', t) (10)

The initial value of 8"L/Ox_ 81_, which is obtained from

Now along this trajectory, differential equations (charac- Eq. (9), is
teristie equations) may be derived for the partial deriva-

: tives of L(x, t) w_th respect to x. These are obtained by 8_L - S (16)
__ taking the partial derivatives of Eq. (7) with respect to x. 8x_ _x_
._ The first partial derivative of Eq. (7) with respect to x_,

_' evaluated at _, yields Note that the terms in Eq. (14) depend upon _L/Ox,
_' O_LIOx_x_,_, and known functions. Hence, the combined

_ _ _L _ 8L .,- _L Of' ,- _r initial value problem defined by Eqs. (I0), (12), (13),
+-E x,t)+ t)= t)-_ --0t--_x_ , _ _x_ ix, _ (14), and (15) is complete and well defined. This tech-

(11) nique may be used to compute higher derivatives of L.
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In each case a complete set of ct,aracteristic equations This should be a good approximation to the actual solu-

will be obtained, tion in the regiop, if !l x-x* It-"is small.

The method of approximation consists of employing a Note that _or systems that conserve probability density

finite number of terms in the expansion of L(x, t) around (r =- 0), OL/?x ==0. Hence, the approximate mean, or

_(t). If the first two terms are employed, then the approx- point of maximum density, lies along the original trajec-

imation to the density function is the Gaussian density tory. In this case, O"L/?x_ Ox_ satisfies the characteristic
function equation

_x,?,xi _ ex,?x, ?x_ ' ?x_?xi _x_"

(:7)
This is the same result that would be _3btained by

when linearizing the equations around the nominal trajectory

(_-'L '_-' ;iL (18) and then applying the continuity equation to solve the
x* = _ - \_--_--../ _----x- linearized problem exactly.
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